Abstract:Integrated sensing and communication (ISAC) is a very promising technology designed to provide both high rate communication capabilities and sensing capabilities. However, in Massive Multi User Multiple-Input Multiple-Output (Massive MU MIMO-ISAC) systems, the dense user access creates a serious multi-user interference (MUI) problem, leading to degradation of communication performance. To alleviate this problem, we propose a decentralized baseband processing (DBP) precoding method. We first model the MUI of dense user scenarios with minimizing Cramer-Rao bound (CRB) as an objective function.Hybrid precoding is an attractive ISAC technique, and hybrid precoding using Partially Connected Structures (PCS) can effectively reduce hardware cost and power consumption. We mitigate the MUI between dense users based on ThomlinsonHarashima Precoding (THP). We demonstrate the effectiveness of the proposed method through simulation experiments. Compared with the existing methods, it can effectively improve the communication data rates and energy efficiency in dense user access scenario, and reduce the hardware complexity of Massive MU MIMO-ISAC systems. The experimental results demonstrate the usefulness of our method for improving the MUI problem in ISAC systems for dense user access scenarios.