Abstract:Koopman operator theory is a popular candidate for data-driven modeling because it provides a global linearization representation for nonlinear dynamical systems. However, existing Koopman operator-based methods suffer from shortcomings in constructing the well-behaved observable function and its inverse and are inefficient enough when dealing with partial differential equations (PDEs). To address these issues, this paper proposes the Invertible Koopman Neural Operator (IKNO), a novel data-driven modeling approach inspired by the Koopman operator theory and neural operator. IKNO leverages an Invertible Neural Network to parameterize observable function and its inverse simultaneously under the same learnable parameters, explicitly guaranteeing the reconstruction relation, thus eliminating the dependency on the reconstruction loss, which is an essential improvement over the original Koopman Neural Operator (KNO). The structured linear matrix inspired by the Koopman operator theory is parameterized to learn the evolution of observables' low-frequency modes in the frequency space rather than directly in the observable space, sustaining IKNO is resolution-invariant like other neural operators. Moreover, with preprocessing such as interpolation and dimension expansion, IKNO can be extended to operator learning tasks defined on non-Cartesian domains. We fully support the above claims based on rich numerical and real-world examples and demonstrate the effectiveness of IKNO and superiority over other neural operators.
Abstract:Diffusion models have demonstrated robust data generation capabilities in various research fields. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively