Abstract:Industrial Anomaly Detection (IAD) poses a formidable challenge due to the scarcity of defective samples, making it imperative to deploy models capable of robust generalization to detect unseen anomalies effectively. Traditional approaches, often constrained by hand-crafted features or domain-specific expert models, struggle to address this limitation, underscoring the need for a paradigm shift. We introduce AnomalyR1, a pioneering framework that leverages VLM-R1, a Multimodal Large Language Model (MLLM) renowned for its exceptional generalization and interpretability, to revolutionize IAD. By integrating MLLM with Group Relative Policy Optimization (GRPO), enhanced by our novel Reasoned Outcome Alignment Metric (ROAM), AnomalyR1 achieves a fully end-to-end solution that autonomously processes inputs of image and domain knowledge, reasons through analysis, and generates precise anomaly localizations and masks. Based on the latest multimodal IAD benchmark, our compact 3-billion-parameter model outperforms existing methods, establishing state-of-the-art results. As MLLM capabilities continue to advance, this study is the first to deliver an end-to-end VLM-based IAD solution that demonstrates the transformative potential of ROAM-enhanced GRPO, positioning our framework as a forward-looking cornerstone for next-generation intelligent anomaly detection systems in industrial applications with limited defective data.