Abstract:In this paper, we propose a novel network training mechanism called "dynamic channel propagation" to prune the neural networks during the training period. In particular, we pick up a specific group of channels in each convolutional layer to participate in the forward propagation in training time according to the significance level of channel, which is defined as channel utility. The utility values with respect to all selected channels are updated simultaneously with the error back-propagation process and will adaptively change. Furthermore, when the training ends, channels with high utility values are retained whereas those with low utility values are discarded. Hence, our proposed scheme trains and prunes neural networks simultaneously. We empirically evaluate our novel training scheme on various representative benchmark datasets and advanced convolutional neural network (CNN) architectures, including VGGNet and ResNet. The experiment results verify the superior performance and robust effectiveness of our approach.
Abstract:Collective intelligence is manifested when multiple agents coherently work in observation, interaction, decision-making and action. In this paper, we define and quantify the intelligence level of heterogeneous agents group with the improved Anytime Universal Intelligence Test(AUIT), based on an extension of the existing evaluation of homogeneous agents group. The relationship of intelligence level with agents composition, group size, spatial complexity and testing time is analyzed. The intelligence level of heterogeneous agents groups is compared with the homogeneous ones to analyze the effects of heterogeneity on collective intelligence. Our work will help to understand the essence of collective intelligence more deeply and reveal the effect of various key factors on group intelligence level.