Abstract:Two forms of imbalances are commonly observed in point cloud semantic segmentation datasets: (1) category imbalances, where certain objects are more prevalent than others; and (2) size imbalances, where certain objects occupy more points than others. Because of this, the majority of categories and large objects are favored in the existing evaluation metrics. This paper suggests fine-grained mIoU and mAcc for a more thorough assessment of point cloud segmentation algorithms in order to address these issues. Richer statistical information is provided for models and datasets by these fine-grained metrics, which also lessen the bias of current semantic segmentation metrics towards large objects. The proposed metrics are used to train and assess various semantic segmentation algorithms on three distinct indoor and outdoor semantic segmentation datasets.
Abstract:To deal with the exhausting annotations, self-supervised representation learning from unlabeled point clouds has drawn much attention, especially centered on augmentation-based contrastive methods. However, specific augmentations hardly produce sufficient transferability to high-level tasks on different datasets. Besides, augmentations on point clouds may also change underlying semantics. To address the issues, we propose a simple but efficient augmentation fusion contrastive learning framework to combine data augmentations in Euclidean space and feature augmentations in feature space. In particular, we propose a data augmentation method based on sampling and graph generation. Meanwhile, we design a data augmentation network to enable a correspondence of representations by maximizing consistency between augmented graph pairs. We further design a feature augmentation network that encourages the model to learn representations invariant to the perturbations using an encoder perturbation. We comprehensively conduct extensive object classification experiments and object part segmentation experiments to validate the transferability of the proposed framework. Experimental results demonstrate that the proposed framework is effective to learn the point cloud representation in a self-supervised manner, and yields state-of-the-art results in the community. The source code is publicly available at: https://zhiyongsu.github.io/Project/AFSRL.html.
Abstract:Point cloud segmentation with scene-level annotations is a promising but challenging task. Currently, the most popular way is to employ the class activation map (CAM) to locate discriminative regions and then generate point-level pseudo labels from scene-level annotations. However, these methods always suffer from the point imbalance among categories, as well as the sparse and incomplete supervision from CAM. In this paper, we propose a novel weighted hypergraph convolutional network-based method, called WHCN, to confront the challenges of learning point-wise labels from scene-level annotations. Firstly, in order to simultaneously overcome the point imbalance among different categories and reduce the model complexity, superpoints of a training point cloud are generated by exploiting the geometrically homogeneous partition. Then, a hypergraph is constructed based on the high-confidence superpoint-level seeds which are converted from scene-level annotations. Secondly, the WHCN takes the hypergraph as input and learns to predict high-precision point-level pseudo labels by label propagation. Besides the backbone network consisting of spectral hypergraph convolution blocks, a hyperedge attention module is learned to adjust the weights of hyperedges in the WHCN. Finally, a segmentation network is trained by these pseudo point cloud labels. We comprehensively conduct experiments on the ScanNet and S3DIS segmentation datasets. Experimental results demonstrate that the proposed WHCN is effective to predict the point labels with scene annotations, and yields state-of-the-art results in the community. The source code is available at http://zhiyongsu.github.io/Project/WHCN.html.