Abstract:Despite the impressive performance of large language models (LLMs), they can present unintended biases and harmful behaviors driven by encoded values, emphasizing the urgent need to understand the value mechanisms behind them. However, current research primarily evaluates these values through external responses with a focus on AI safety, lacking interpretability and failing to assess social values in real-world contexts. In this paper, we propose a novel framework called ValueExploration, which aims to explore the behavior-driven mechanisms of National Social Values within LLMs at the neuron level. As a case study, we focus on Chinese Social Values and first construct C-voice, a large-scale bilingual benchmark for identifying and evaluating Chinese Social Values in LLMs. By leveraging C-voice, we then identify and locate the neurons responsible for encoding these values according to activation difference. Finally, by deactivating these neurons, we analyze shifts in model behavior, uncovering the internal mechanism by which values influence LLM decision-making. Extensive experiments on four representative LLMs validate the efficacy of our framework. The benchmark and code will be available.
Abstract:Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains.