Abstract:Accurate polyp segmentation is crucial for the early detection and prevention of colorectal cancer. However, the existing polyp detection methods sometimes ignore multi-directional features and drastic changes in scale. To address these challenges, we design an Orthogonal Direction Enhancement and Scale Aware Network (ODC-SA Net) for polyp segmentation. The Orthogonal Direction Convolutional (ODC) block can extract multi-directional features using transposed rectangular convolution kernels through forming an orthogonal feature vector basis, which solves the issue of random feature direction changes and reduces computational load. Additionally, the Multi-scale Fusion Attention (MSFA) mechanism is proposed to emphasize scale changes in both spatial and channel dimensions, enhancing the segmentation accuracy for polyps of varying sizes. Extraction with Re-attention Module (ERA) is used to re-combinane effective features, and Structures of Shallow Reverse Attention Mechanism (SRA) is used to enhance polyp edge with low level information. A large number of experiments conducted on public datasets have demonstrated that the performance of this model is superior to state-of-the-art methods.
Abstract:Lots of popular calibration methods in medical images focus on classification, but there are few comparable studies on semantic segmentation. In polyp segmentation of medical images, we find most diseased area occupies only a small portion of the entire image, resulting in previous models being not well-calibrated for lesion regions but well-calibrated for background, despite their seemingly better Expected Calibration Error (ECE) scores overall. Therefore, we proposed four-branches calibration network with Mask-Loss and Mask-TS strategies to more focus on the scaling of logits within potential lesion regions, which serves to mitigate the influence of background interference. In the experiments, we compare the existing calibration methods with the proposed Mask Temperature Scaling (Mask-TS). The results indicate that the proposed calibration network outperforms other methods both qualitatively and quantitatively.