Abstract:Image restoration~(IR), as a fundamental multimedia data processing task, has a significant impact on downstream visual applications. In recent years, researchers have focused on developing general-purpose IR models capable of handling diverse degradation types, thereby reducing the cost and complexity of model development. Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas. CNNs excel in efficient inference, whereas Transformers and Mamba excel at capturing long-range dependencies and modeling global contexts. While each architecture has demonstrated success in specialized, single-task settings, limited efforts have been made to effectively integrate heterogeneous architectures to jointly address diverse IR challenges. To bridge this gap, we propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion. RestorMixer adopts a three-stage encoder-decoder structure, where each stage is tailored to the resolution and feature characteristics of the input. In the initial high-resolution stage, CNN-based blocks are employed to rapidly extract shallow local features. In the subsequent stages, we integrate a refined multi-directional scanning Mamba module with a multi-scale window-based self-attention mechanism. This hierarchical and adaptive design enables the model to leverage the strengths of CNNs in local feature extraction, Mamba in global context modeling, and attention mechanisms in dynamic feature refinement. Extensive experimental results demonstrate that RestorMixer achieves leading performance across multiple IR tasks while maintaining high inference efficiency. The official code can be accessed at https://github.com/ClimBin/RestorMixer.
Abstract:Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model. However, in real-world scenarios, images often suffer from combinations of multiple degradation factors. Existing multiple-in-one IR models encounter challenges related to degradation diversity and prompt singularity when addressing this issue. In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations. To address degradation diversity, we design a Local Dynamic Optimization (LDO) module which dynamically processes degraded areas of varying types and granularities. To tackle the prompt singularity issue, we develop an efficient Conditional Feature Embedding (CFE) module that guides the decoder in leveraging degradation-type-related features, significantly improving the model's performance in mixed degradation restoration scenarios. To validate the effectiveness of our model, we introduce a new dataset containing both single and mixed degradation elements. Experimental results demonstrate that our proposed model achieves state-of-the-art (SOTA) performance not only on mixed degradation tasks but also on classic single-task restoration benchmarks.