Abstract:This article introduces a multimodal motion planning (MMP) algorithm that combines three-dimensional (3-D) path planning and a DWA obstacle avoidance algorithm. The algorithms aim to plan the path and motion of obstacle-overcoming robots in complex unstructured scenes. A novel A-star algorithm is proposed to combine the characteristics of unstructured scenes and a strategy to switch it into a greedy best-first strategy algorithm. Meanwhile, the algorithm of path planning is integrated with the DWA algorithm so that the robot can perform local dynamic obstacle avoidance during the movement along the global planned path. Furthermore, when the proposed global path planning algorithm combines with the local obstacle avoidance algorithm, the robot can correct the path after obstacle avoidance and obstacle overcoming. The simulation experiments in a factory with several complex environments verified the feasibility and robustness of the algorithms. The algorithms can quickly generate a reasonable 3-D path for obstacle-overcoming robots and perform reliable local obstacle avoidance under the premise of considering the characteristics of the scene and motion obstacles.