Abstract:Research on knowledge graph embedding (KGE) has emerged as an active field in which most existing KGE approaches mainly focus on static structural data and ignore the influence of temporal variation involved in time-aware triples. In order to deal with this issue, several temporal knowledge graph embedding (TKGE) approaches have been proposed to integrate temporal and structural information in recent years. However, these methods only employ a uniformly random sampling to construct negative facts. As a consequence, the corrupted samples are often too simplistic for training an effective model. In this paper, we propose a new temporal knowledge graph embedding framework by introducing adversarial learning to further refine the performance of traditional TKGE models. In our framework, a generator is utilized to construct high-quality plausible quadruples and a discriminator learns to obtain the embeddings of entities and relations based on both positive and negative samples. Meanwhile, we also apply a Gumbel-Softmax relaxation and the Wasserstein distance to prevent vanishing gradient problems on discrete data; an inherent flaw in traditional generative adversarial networks. Through comprehensive experimentation on temporal datasets, the results indicate that our proposed framework can attain significant improvements based on benchmark models and also demonstrate the effectiveness and applicability of our framework.
Abstract:Interaction between pharmacological agents can trigger unexpected adverse events. Capturing richer and more comprehensive information about drug-drug interactions (DDI) is one of the key tasks in public health and drug development. Recently, several knowledge graph embedding approaches have received increasing attention in the DDI domain due to their capability of projecting drugs and interactions into a low-dimensional feature space for predicting links and classifying triplets. However, existing methods only apply a uniformly random mode to construct negative samples. As a consequence, these samples are often too simplistic to train an effective model. In this paper, we propose a new knowledge graph embedding framework by introducing adversarial autoencoders (AAE) based on Wasserstein distances and Gumbel-Softmax relaxation for drug-drug interactions tasks. In our framework, the autoencoder is employed to generate high-quality negative samples and the hidden vector of the autoencoder is regarded as a plausible drug candidate. Afterwards, the discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets. Meanwhile, in order to solve vanishing gradient problems on the discrete representation--an inherent flaw in traditional generative models--we utilize the Gumbel-Softmax relaxation and the Wasserstein distance to train the embedding model steadily. We empirically evaluate our method on two tasks, link prediction and DDI classification. The experimental results show that our framework can attain significant improvements and noticeably outperform competitive baselines.