Abstract:Truck transportation remains the dominant mode of US freight transportation because of its advantages, such as the flexibility of accessing pickup and drop-off points and faster delivery. Because of the massive freight volume transported by trucks, understanding the effects of population and employment characteristics on truck flows is critical for better transportation planning and investment decisions. The US Federal Highway Administration published a truck travel origin-destination data set as part of the Next Generation National Household Travel Survey program. This data set contains the total number of truck trips in 2020 within and between 583 predefined zones encompassing metropolitan and nonmetropolitan statistical areas within each state and Washington, DC. In this study, origin-destination-level truck trip flow data was augmented to include zone-level population and employment characteristics from the US Census Bureau. Census population and County Business Patterns data were included. The final data set was used to train a machine learning algorithm-based model, Extreme Gradient Boosting (XGBoost), where the target variable is the number of total truck trips. Shapley Additive ExPlanation (SHAP) was adopted to explain the model results. Results showed that the distance between the zones was the most important variable and had a nonlinear relationship with truck flows.
Abstract:The US Census Bureau has collected two rounds of experimental data from the Commodity Flow Survey, providing shipment-level characteristics of nationwide commodity movements, published in 2012 (i.e., Public Use Microdata) and in 2017 (i.e., Public Use File). With this information, data-driven methods have become increasingly valuable for understanding detailed patterns in freight logistics. In this study, we used the 2017 Commodity Flow Survey Public Use File data set to explore building a high-performance freight mode choice model, considering three main improvements: (1) constructing local models for each separate commodity/industry category; (2) extracting useful geographical features, particularly the derived distance of each freight mode between origin/destination zones; and (3) applying additional ensemble learning methods such as stacking or voting to combine results from local and unified models for improved performance. The proposed method achieved over 92% accuracy without incorporating external information, an over 19% increase compared to directly fitting Random Forests models over 10,000 samples. Furthermore, SHAP (Shapely Additive Explanations) values were computed to explain the outputs and major patterns obtained from the proposed model. The model framework could enhance the performance and interpretability of existing freight mode choice models.