Abstract:A typical benchmark dataset for recommender system (RecSys) evaluation consists of user-item interactions generated on a platform within a time period. The interaction generation mechanism partially explains why a user interacts with (e.g.,like, purchase, rate) an item, and the context of when a particular interaction happened. In this study, we conduct a meticulous analysis on the MovieLens dataset and explain the potential impact on using the dataset for evaluating recommendation algorithms. We make a few main findings from our analysis. First, there are significant differences in user interactions at the different stages when a user interacts with the MovieLens platform. The early interactions largely define the user portrait which affect the subsequent interactions. Second, user interactions are highly affected by the candidate movies that are recommended by the platform's internal recommendation algorithm(s). Removal of interactions that happen nearer to the last few interactions of a user leads to increasing difficulty in learning user preference, thus deteriorating recommendation accuracy. Third, changing the order of user interactions makes it more difficult for sequential algorithms to capture the progressive interaction process. Based on these findings, we further discuss the discrepancy between the interaction generation mechanism that is employed by the MovieLens system and that of typical real world recommendation scenarios. In summary, models that achieve excellent recommendation accuracy on the MovieLens dataset may not demonstrate superior performance in practice for at least two kinds of differences: (i) the differences in the contexts of user-item interaction generation, and (ii) the differences in user knowledge about the item collections.