Abstract:Extracting geometry features from photographic images independently of surface texture and transferring them onto different materials remains a complex challenge. In this study, we introduce Harmonizing Attention, a novel training-free approach that leverages diffusion models for texture-aware geometry transfer. Our method employs a simple yet effective modification of self-attention layers, allowing the model to query information from multiple reference images within these layers. This mechanism is seamlessly integrated into the inversion process as Texture-aligning Attention and into the generation process as Geometry-aligning Attention. This dual-attention approach ensures the effective capture and transfer of material-independent geometry features while maintaining material-specific textural continuity, all without the need for model fine-tuning.
Abstract:In image editing employing diffusion models, it is crucial to preserve the reconstruction quality of the original image while changing its style. Although existing methods ensure reconstruction quality through optimization, a drawback of these is the significant amount of time required for optimization. In this paper, we propose negative-prompt inversion, a method capable of achieving equivalent reconstruction solely through forward propagation without optimization, thereby enabling much faster editing processes. We experimentally demonstrate that the reconstruction quality of our method is comparable to that of existing methods, allowing for inversion at a resolution of 512 pixels and with 50 sampling steps within approximately 5 seconds, which is more than 30 times faster than null-text inversion. Reduction of the computation time by the proposed method further allows us to use a larger number of sampling steps in diffusion models to improve the reconstruction quality with a moderate increase in computation time.