Abstract:The integration of Large Language Models (LLMs) like ChatGPT into the workflows of geotechnical engineering has a high potential to transform how the discipline approaches problem-solving and decision-making. This paper delves into the innovative application of LLMs in geotechnical engineering, as explored in a hands-on workshop held in Tokyo, Japan. The event brought together a diverse group of 20 participants, including students, researchers, and professionals from academia, industry, and government sectors, to investigate practical uses of LLMs in addressing specific geotechnical challenges. The workshop facilitated the creation of solutions for four different practical geotechnical problems as illustrative examples, culminating in the development of an academic paper. The paper discusses the potential of LLMs to transform geotechnical engineering practices, highlighting their proficiency in handling a range of tasks from basic data analysis to complex, multimodal problem-solving. It also addresses the challenges in implementing LLMs, particularly in achieving high precision and accuracy in specialized tasks, and underscores the need for expert oversight. The findings demonstrate LLMs' effectiveness in enhancing efficiency, data processing, and decision-making in geotechnical engineering, suggesting a paradigm shift towards more integrated, data-driven approaches in this field. This study not only showcases the potential of LLMs in a specific engineering domain, but also sets a precedent for their broader application in interdisciplinary research and practice, where the synergy of human expertise and artificial intelligence redefines the boundaries of problem-solving.
Abstract:This paper elucidates the challenges and opportunities inherent in integrating data-driven methodologies into geotechnics, drawing inspiration from the success of materials informatics. Highlighting the intricacies of soil complexity, heterogeneity, and the lack of comprehensive data, the discussion underscores the pressing need for community-driven database initiatives and open science movements. By leveraging the transformative power of deep learning, particularly in feature extraction from high-dimensional data and the potential of transfer learning, we envision a paradigm shift towards a more collaborative and innovative geotechnics field. The paper concludes with a forward-looking stance, emphasizing the revolutionary potential brought about by advanced computational tools like large language models in reshaping geotechnics informatics.