Abstract:The advancement of advanced air mobility (AAM) in recent years has given rise to the concept of low-altitude economy (LAE). However, the diverse flight activities associated with the emerging LAE applications in urban scenarios confront complex physical environments, which urgently necessitates ubiquitous and reliable communication to guarantee the operation safety of the low-altitude aircraft. As one of promising technologies for the sixth generation (6G) mobile networks, channel knowledge map (CKM) enables the environment-aware communication by constructing a site-specific dataset, thereby providing a priori on-site information for the aircraft to obtain the channel state information (CSI) at arbitrary locations with much reduced online overhead. Diverse base station (BS) deployments in the three-dimensional (3D) urban low-altitude environment require efficient 3D CKM construction to capture spatial channel characteristics with less overhead. Towards this end, this paper proposes a 3D channel gain map (CGM) inference method based on a 3D conditional generative adversarial network (3D-CGAN). Specifically, we first analyze the potential deployment types of BSs in urban low-altitude scenario, and investigate the CGM representation with the corresponding 3D channel gain model. The framework of the proposed 3D-CGAN is then discussed, which is trained by a dataset consisting of existing CGMs. Consequently, the trained 3D-CGAN is capable of inferring the corresponding CGM only based on the BS coordinate without additional measurement. The simulation results demonstrate that the CGMs inferred by the proposed 3D-CGAN outperform those of the benchmark schemes, which can accurately reflect the radio propagation condition in 3D environment.