Abstract:PyLaia is one of the most popular open-source software for Automatic Text Recognition (ATR), delivering strong performance in terms of speed and accuracy. In this paper, we outline our recent contributions to the PyLaia library, focusing on the incorporation of reliable confidence scores and the integration of statistical language modeling during decoding. Our implementation provides an easy way to combine PyLaia with n-grams language models at different levels. One of the highlights of this work is that language models are completely auto-tuned: they can be built and used easily without any expert knowledge, and without requiring any additional data. To demonstrate the significance of our contribution, we evaluate PyLaia's performance on twelve datasets, both with and without language modelling. The results show that decoding with small language models improves the Word Error Rate by 13% and the Character Error Rate by 12% in average. Additionally, we conduct an analysis of confidence scores and highlight the importance of calibration techniques. Our implementation is publicly available in the official PyLaia repository at https://gitlab.teklia.com/atr/pylaia, and twelve open-source models are released on Hugging Face.
Abstract:This paper presents a complete processing workflow for extracting information from French census lists from 1836 to 1936. These lists contain information about individuals living in France and their households. We aim at extracting all the information contained in these tables using automatic handwritten table recognition. At the end of the Socface project, in which our work is taking place, the extracted information will be redistributed to the departmental archives, and the nominative lists will be freely available to the public, allowing anyone to browse hundreds of millions of records. The extracted data will be used by demographers to analyze social change over time, significantly improving our understanding of French economic and social structures. For this project, we developed a complete processing workflow: large-scale data collection from French departmental archives, collaborative annotation of documents, training of handwritten table text and structure recognition models, and mass processing of millions of images. We present the tools we have developed to easily collect and process millions of pages. We also show that it is possible to process such a wide variety of tables with a single table recognition model that uses the image of the entire page to recognize information about individuals, categorize them and automatically group them into households. The entire process has been successfully used to process the documents of a departmental archive, representing more than 450,000 images.