Abstract:Utilizing unsupervised representation learning for quantum architecture search (QAS) represents a cutting-edge approach poised to realize potential quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices. Most QAS algorithms combine their search space and search algorithms together and thus generally require evaluating a large number of quantum circuits during the search process. Predictor-based QAS algorithms can alleviate this problem by directly estimating the performance of circuits according to their structures. However, a high-performance predictor generally requires very time-consuming labeling to obtain a large number of labeled quantum circuits. Recently, a classical neural architecture search algorithm Arch2vec inspires us by showing that architecture search can benefit from decoupling unsupervised representation learning from the search process. Whether unsupervised representation learning can help QAS without any predictor is still an open topic. In this work, we propose a framework QAS with unsupervised representation learning and visualize how unsupervised architecture representation learning encourages quantum circuit architectures with similar connections and operators to cluster together. Specifically, our framework enables the process of QAS to be decoupled from unsupervised architecture representation learning so that the learned representation can be directly applied to different downstream applications. Furthermore, our framework is predictor-free eliminating the need for a large number of labeled quantum circuits. During the search process, we use two algorithms REINFORCE and Bayesian Optimization to directly search on the latent representation, and compare them with the method Random Search. The results show our framework can more efficiently get well-performing candidate circuits within a limited number of searches.
Abstract:Differentiable quantum architecture search (DQAS) is a gradient-based framework to design quantum circuits automatically in the NISQ era. It was motivated by such as low fidelity of quantum hardware, low flexibility of circuit architecture, high circuit design cost, barren plateau (BP) problem, and periodicity of weights. People used it to address error mitigation, unitary decomposition, and quantum approximation optimization problems based on fixed datasets. Quantum reinforcement learning (QRL) is a part of quantum machine learning and often has various data. QRL usually uses a manually designed circuit. However, the pre-defined circuit needs more flexibility for different tasks, and the circuit design based on various datasets could become intractable in the case of a large circuit. The problem of whether DQAS can be applied to quantum deep Q-learning with various datasets is still open. The main target of this work is to discover the capability of DQAS to solve quantum deep Q-learning problems. We apply a gradient-based framework DQAS on reinforcement learning tasks and evaluate it in two different environments - cart pole and frozen lake. It contains input- and output weights, progressive search, and other new features. The experiments conclude that DQAS can design quantum circuits automatically and efficiently. The evaluation results show significant outperformance compared to the manually designed circuit. Furthermore, the performance of the automatically created circuit depends on whether the super-circuit learned well during the training process. This work is the first to show that gradient-based quantum architecture search is applicable to QRL tasks.