Abstract:Recently, advancements in deep learning have enabled physics-informed neural networks (PINNs) to solve partial differential equations (PDEs). Numerical differentiation (ND) using the finite difference (FD) method is efficient in physics-constrained designs, even in parameterized settings, often employing body-fitted block-structured grids for complex flow cases. However, convolution operators in CNNs for finite differences are typically limited to single-block grids. To address this, we use graphs and graph networks (GNs) to learn flow representations across multi-block structured grids. We propose a graph convolution-based finite difference method (GC-FDM) to train GNs in a physics-constrained manner, enabling differentiable finite difference operations on graph unstructured outputs. Our goal is to solve parametric steady incompressible Navier-Stokes equations for flows around a backward-facing step, a circular cylinder, and double cylinders, using multi-block structured grids. Comparing our method to a CFD solver under various boundary conditions, we demonstrate improved training efficiency and accuracy, achieving a minimum relative error of $10^{-3}$ in velocity field prediction and a 20\% reduction in training cost compared to PINNs.