Abstract:Decoder-only discrete-token language models have recently achieved significant success in automatic speech recognition. However, systematic analyses of how different modalities impact performance in specific scenarios remain limited. In this paper, we investigate the effects of multiple modalities on recognition accuracy on both synthetic and real-world datasets. Our experiments suggest that: (1) Integrating more modalities can increase accuracy; in particular, our paper is, to our best knowledge, the first to show the benefit of combining audio, image context, and lip information; (2) Images as a supplementary modality for speech recognition provide the greatest benefit at moderate noise levels, moreover, they exhibit a different trend compared to inherently synchronized modalities like lip movements; (3) Performance improves on both synthetic and real-world datasets when the most relevant visual information is filtered as a preprocessing step.
Abstract:Recent work on discrete speech tokenization has paved the way for models that can seamlessly perform multiple tasks across modalities, e.g., speech recognition, text to speech, speech to speech translation. Moreover, large language models (LLMs) pretrained from vast text corpora contain rich linguistic information that can improve accuracy in a variety of tasks. In this paper, we present a decoder-only Discrete Multimodal Language Model (DMLM), which can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision). We explore several critical aspects of discrete multi-modal models, including the loss function, weight initialization, mixed training supervision, and codebook. Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training. Moreover, for ASR, it benefits from initializing DMLM from a pretrained LLM, and from a codebook derived from Whisper activations.