Tsinghua University
Abstract:Forecasting in power systems often involves multivariate time series with complex dependencies and strict privacy constraints across regions. Traditional forecasting methods require significant expert knowledge and struggle to generalize across diverse deployment scenarios. Recent advancements in pre-trained time series models offer new opportunities, but their zero-shot performance on domain-specific tasks remains limited. To address these challenges, we propose a novel MoE Encoder module that augments pretrained forecasting models by injecting a sparse mixture-of-experts layer between tokenization and encoding. This design enables two key capabilities: (1) trans forming multivariate forecasting into an expert-guided univariate task, allowing the model to effectively capture inter-variable relations, and (2) supporting localized training and lightweight parameter sharing in federated settings where raw data cannot be exchanged. Extensive experiments on public multivariate datasets demonstrate that MoE-Encoder significantly improves forecasting accuracy compared to strong baselines. We further simulate federated environments and show that transferring only MoE-Encoder parameters allows efficient adaptation to new regions, with minimal performance degradation. Our findings suggest that MoE-Encoder provides a scalable and privacy-aware extension to foundation time series models.
Abstract:This paper proposes a multiagent based bi-level operation framework for the low-carbon demand management in distribution networks considering the carbon emission allowance on the demand side. In the upper level, the aggregate load agents optimize the control signals for various types of loads to maximize the profits; in the lower level, the distribution network operator makes optimal dispatching decisions to minimize the operational costs and calculates the distribution locational marginal price and carbon intensity. The distributed flexible load agent has only incomplete information of the distribution network and cooperates with other agents using networked communication. Finally, the problem is formulated into a networked multi-agent constrained Markov decision process, which is solved using a safe reinforcement learning algorithm called consensus multi-agent constrained policy optimization considering the carbon emission allowance for each agent. Case studies with the IEEE 33-bus and 123-bus distribution network systems demonstrate the effectiveness of the proposed approach, in terms of satisfying the carbon emission constraint on demand side, ensuring the safe operation of the distribution network and preserving privacy of both sides.




Abstract:Electricity price prediction plays a vital role in energy storage system (ESS) management. Current prediction models focus on reducing prediction errors but overlook their impact on downstream decision-making. So this paper proposes a decision-focused electricity price prediction approach for ESS arbitrage to bridge the gap from the downstream optimization model to the prediction model. The decision-focused approach aims at utilizing the downstream arbitrage model for training prediction models. It measures the difference between actual decisions under the predicted price and oracle decisions under the true price, i.e., decision error, by regret, transforms it into the tractable surrogate regret, and then derives the gradients to predicted price for training prediction models. Based on the prediction and decision errors, this paper proposes the hybrid loss and corresponding stochastic gradient descent learning method to learn prediction models for prediction and decision accuracy. The case study verifies that the proposed approach can efficiently bring more economic benefits and reduce decision errors by flattening the time distribution of prediction errors, compared to prediction models for only minimizing prediction errors.