Abstract:Approximately half of the world's population is multilingual, making multilingual ASR (MASR) essential. Deploying multiple monolingual models is challenging when the ground-truth language is unknown in advance. This motivates research efforts on configurable multilingual MASR models that can be prompted manually or adapted automatically to recognise specific languages. In this paper, we present the Configurable MASR model with Summary Vector (csvMASR), a novel architecture designed to enhance configurability. Our approach leverages adapters and introduces speech summary vector representations, inspired by conversational summary representations in speech diarization, to combine outputs from language-specific components at the utterance level. We also incorporate an auxiliary language classification loss to enhance configurability. Using data from 7 languages in the Multilingual Librispeech (MLS) dataset, csvMASR outperforms existing MASR models and reduces the word error rate (WER) from 10.33\% to 9.95\% when compared with the baseline. Additionally, csvMASR demonstrates superior performance in language classification and prompting tasks.