Abstract:Tabular data synthesis using diffusion models has gained significant attention for its potential to balance data utility and privacy. However, existing privacy evaluations often rely on heuristic metrics or weak membership inference attacks (MIA), leaving privacy risks inadequately assessed. In this work, we conduct a rigorous MIA study on diffusion-based tabular synthesis, revealing that state-of-the-art attacks designed for image models fail in this setting. We identify noise initialization as a key factor influencing attack efficacy and propose a machine-learning-driven approach that leverages loss features across different noises and time steps. Our method, implemented with a lightweight MLP, effectively learns membership signals, eliminating the need for manual optimization. Experimental results from the MIDST Challenge @ SaTML 2025 demonstrate the effectiveness of our approach, securing first place across all tracks. Code is available at https://github.com/Nicholas0228/Tartan_Federer_MIDST.