Abstract:Inappropriate use of Dempster's rule of combination has led some authors to reject the Dempster-Shafer model, arguing that it leads to supposedly unacceptable conclusions when defaults are involved. A most classic example is about the penguin Tweety. This paper will successively present: the origin of the miss-management of the Tweety example; two types of default; the correct solution for both types based on the transferable belief model (our interpretation of the Dempster-Shafer model (Shafer 1976, Smets 1988)); Except when explicitly stated, all belief functions used in this paper are simple support functions, i.e. belief functions for which only one proposition (the focus) of the frame of discernment receives a positive basic belief mass with the remaining mass being given to the tautology. Each belief function will be described by its focus and the weight of the focus (e.g. m(A)=.9). Computation of the basic belief masses are always performed by vacuously extending each belief function to the product space built from all variables involved, combining them on that space by Dempster's rule of combination, and projecting the result to the space corresponding to each individual variable.
Abstract:We motivate and describe a theory of belief in this paper. This theory is developed with the following view of human belief in mind. Consider the belief that an event E will occur (or has occurred or is occurring). An agent either entertains this belief or does not entertain this belief (i.e., there is no "grade" in entertaining the belief). If the agent chooses to exercise "the will to believe" and entertain this belief, he/she/it is entitled to a degree of confidence c (1 > c > 0) in doing so. Adopting this view of human belief, we conjecture that whenever an agent entertains the belief that E will occur with c degree of confidence, the agent will be surprised (to the extent c) upon realizing that E did not occur.
Abstract:In this paper, we present a decision support system based on belief functions and the pignistic transformation. The system is an integration of an evidential system for belief function propagation and a valuation-based system for Bayesian decision analysis. The two subsystems are connected through the pignistic transformation. The system takes as inputs the user's "gut feelings" about a situation and suggests what, if any, are to be tested and in what order, and it does so with a user friendly interface.
Abstract:We give an axiomatization of confidence transfer - a known conditioning scheme - from the perspective of expectation-based inference in the sense of Gardenfors and Makinson. Then, we use the notion of belief independence to "filter out" different proposal s of possibilistic conditioning rules, all are variations of confidence transfer. Among the three rules that we consider, only Dempster's rule of conditioning passes the test of supporting the notion of belief independence. With the use of this conditioning rule, we then show that we can use local computation for computing desired conditional marginal possibilities of the joint possibility satisfying the given constraints. It turns out that our local computation scheme is already proposed by Shenoy. However, our intuitions are completely different from that of Shenoy. While Shenoy just defines a local computation scheme that fits his framework of valuation-based systems, we derive that local computation scheme from II(,8) = tI(,8 I a) * II(a) and appropriate independence assumptions, just like how the Bayesians derive their local computation scheme.