Abstract:This study explores modeling and control for quadrotor acrobatics, focusing on executing flip maneuvers. Flips are an elegant way to deliver sensor probes into no-fly or hazardous zones, like volcanic vents. Successful flips require feasible trajectories and precise control, influenced by rotor dynamics, thrust allocation, and control methodologies. The research introduces a novel approach using Model Predictive Control (MPC) for real-time trajectory planning. The MPC considers dynamic constraints and environmental variables, ensuring system stability during maneuvers. The proposed methodology's effectiveness is examined through simulation studies in ROS and Gazebo, providing insights into quadrotor behavior, response time, and trajectory accuracy. Real-time flight experiments on a custom agile quadrotor using PixHawk 4 and Hardkernel Odroid validate MPC-designed controllers. Experiments confirm successful execution and adaptability to real-world scenarios. Outcomes contribute to autonomous aerial robotics, especially aerial acrobatics, enhancing mission capabilities. MPC controllers find applications in probe throws and optimal image capture views through efficient flight paths, e.g., full roll maneuvers. This research paves the way for quadrotors in demanding scenarios, showcasing groundbreaking applications. Video Link: \url{ https://www.youtube.com/watch?v=UzR0PWjy9W4}
Abstract:Our earlier research built a virtual shake robot in simulation to study the dynamics of precariously balanced rocks (PBR), which are negative indicators of earthquakes in nature. The simulation studies need validation through physical experiments. For this purpose, we developed Shakebot, a low-cost (under $2,000), open-source shake table to validate simulations of PBR dynamics and facilitate other ground motion experiments. The Shakebot is a custom one-dimensional prismatic robotic system with perception and motion software developed using the Robot Operating System (ROS). We adapted affordable and high-accuracy components from 3D printers, particularly a closed-loop stepper motor for actuation and a toothed belt for transmission. The stepper motor enables the bed to reach a maximum horizontal acceleration of 11.8 m/s^2 (1.2 g), and velocity of 0.5 m/s, when loaded with a 2 kg scale-model PBR. The perception system of the Shakebot consists of an accelerometer and a high frame-rate camera. By fusing camera-based displacements with acceleration measurements, the Shakebot is able to carry out accurate bed velocity estimation. The ROS-based perception and motion software simplifies the transition of code from our previous virtual shake robot to the physical Shakebot. The reuse of the control programs ensures that the implemented ground motions are consistent for both the simulation and physical experiments, which is critical to validate our simulation experiments.