Abstract:Minesweeper is a popular spatial-based decision-making game that works with incomplete information. As an exemplary NP-complete problem, it is a major area of research employing various artificial intelligence paradigms. The present work models this game as Constraint Satisfaction Problem (CSP) and Markov Decision Process (MDP). We propose a new method named as dependents from the independent set using deterministic solution search (DSScsp) for the faster enumeration of all solutions of a CSP based Minesweeper game and improve the results by introducing heuristics. Using MDP, we implement machine learning methods on these heuristics. We train the classification model on sparse data with results from CSP formulation. We also propose a new rewarding method for applying a modified deep Q-learning for better accuracy and versatile learning in the Minesweeper game. The overall results have been analyzed for different kinds of Minesweeper games and their accuracies have been recorded. Results from these experiments show that the proposed method of MDP based classification model and deep Q-learning overall is the best methods in terms of accuracy for games with given mine densities.
Abstract:A contextual care protocol is used by a medical practitioner for patient healthcare, given the context or situation that the specified patient is in. This paper proposes a method to build an automated self-adapting protocol which can help make relevant, early decisions for effective healthcare delivery. The hybrid model leverages neural networks and decision trees. The neural network estimates the chances of each disease and each tree in the decision trees represents care protocol for a disease. These trees are subject to change in case of aberrations found by the diagnosticians. These corrections or prediction errors are clustered into similar groups for scalability and review by the experts. The corrections as suggested by the experts are incorporated into the model.