Abstract:A contextual care protocol is used by a medical practitioner for patient healthcare, given the context or situation that the specified patient is in. This paper proposes a method to build an automated self-adapting protocol which can help make relevant, early decisions for effective healthcare delivery. The hybrid model leverages neural networks and decision trees. The neural network estimates the chances of each disease and each tree in the decision trees represents care protocol for a disease. These trees are subject to change in case of aberrations found by the diagnosticians. These corrections or prediction errors are clustered into similar groups for scalability and review by the experts. The corrections as suggested by the experts are incorporated into the model.