Abstract:Image captured under low-light conditions presents unpleasing artifacts, which debilitate the performance of feature extraction for many upstream visual tasks. Low-light image enhancement aims at improving brightness and contrast, and further reducing noise that corrupts the visual quality. Recently, many image restoration methods based on Swin Transformer have been proposed and achieve impressive performance. However, On one hand, trivially employing Swin Transformer for low-light image enhancement would expose some artifacts, including over-exposure, brightness imbalance and noise corruption, etc. On the other hand, it is impractical to capture image pairs of low-light images and corresponding ground-truth, i.e. well-exposed image in same visual scene. In this paper, we propose a dual-branch network based on Swin Transformer, guided by a signal-to-noise ratio prior map which provides the spatial-varying information for low-light image enhancement. Moreover, we leverage unsupervised learning to construct the optimization objective based on Retinex model, to guide the training of proposed network. Experimental results demonstrate that the proposed model is competitive with the baseline models.
Abstract:At the age of big data, recommender systems have shown remarkable success as a key means of information filtering in our daily life. Recent years have witnessed the technical development of recommender systems, from perception learning to cognition reasoning which intuitively build the task of recommendation as the procedure of logical reasoning and have achieve significant improvement. However, the logical statement in reasoning implicitly admits irrelevance of ordering, even does not consider time information which plays an important role in many recommendation tasks. Furthermore, recommendation model incorporated with temporal context would tend to be self-attentive, i.e., automatically focus more (less) on the relevance (irrelevance), respectively. To address these issues, in this paper, we propose a Time-aware Self-Attention with Neural Collaborative Reasoning (TiSANCR) based recommendation model, which integrates temporal patterns and self-attention mechanism into reasoning-based recommendation. Specially, temporal patterns represented by relative time, provide context and auxiliary information to characterize the user's preference in recommendation, while self-attention is leveraged to distill informative patterns and suppress irrelevances. Therefore, the fusion of self-attentive temporal information provides deeper representation of user's preference. Extensive experiments on benchmark datasets demonstrate that the proposed TiSANCR achieves significant improvement and consistently outperforms the state-of-the-art recommendation methods.