Abstract:This paper concerns the coordinate multi-cell beamforming design for integrated sensing and communications (ISAC). In particular, we assume that each base station (BS) has massive antennas. The optimization objective is to maximize a weighted sum of the data rates (for communications) and the Fisher information (for sensing). We first show that the conventional beamforming method for the multiple-input multiple-output (MIMO) transmission, i.e., the weighted minimum mean square error (WMMSE) algorithm, has a natural extension to the ISAC problem scenario from a fractional programming (FP) perspective. However, the extended WMMSE algorithm requires computing the $N\times N$ matrix inverse extensively, where $N$ is proportional to the antenna array size, so the algorithm becomes quite costly when antennas are massively deployed. To address this issue, we develop a nonhomogeneous bound and use it in conjunction with the FP technique to solve the ISAC beamforming problem without the need to invert any large matrices. It is further shown that the resulting new FP algorithm has an intimate connection with gradient projection, based on which we can accelerate the convergence via Nesterov's gradient extrapolation.