Abstract:Radiology report analysis provides valuable information that can aid with public health initiatives, and has been attracting increasing attention from the research community. In this work, we present a novel insight that the structure of a radiology report (namely, the Findings and Impression sections) offers different views of a radiology scan. Based on this intuition, we further propose a co-training approach, where two machine learning models are built upon the Findings and Impression sections, respectively, and use each other's information to boost performance with massive unlabeled data in a semi-supervised manner. We conducted experiments in a public health surveillance study, and results show that our co-training approach is able to improve performance using the dual views and surpass competing supervised and semi-supervised methods.
Abstract:Previous approaches for blind image super-resolution (SR) have relied on degradation estimation to restore high-resolution (HR) images from their low-resolution (LR) counterparts. However, accurate degradation estimation poses significant challenges. The SR model's incompatibility with degradation estimation methods, particularly the Correction Filter, may significantly impair performance as a result of correction errors. In this paper, we introduce a novel blind SR approach that focuses on Learning Correction Errors (LCE). Our method employs a lightweight Corrector to obtain a corrected low-resolution (CLR) image. Subsequently, within an SR network, we jointly optimize SR performance by utilizing both the original LR image and the frequency learning of the CLR image. Additionally, we propose a new Frequency-Self Attention block (FSAB) that enhances the global information utilization ability of Transformer. This block integrates both self-attention and frequency spatial attention mechanisms. Extensive ablation and comparison experiments conducted across various settings demonstrate the superiority of our method in terms of visual quality and accuracy. Our approach effectively addresses the challenges associated with degradation estimation and correction errors, paving the way for more accurate blind image SR.