Abstract:As new deep-learned error-correcting codes continue to be introduced, it is important to develop tools to interpret the designed codes and understand the training process. Prior work focusing on the deep-learned TurboAE has both interpreted the learned encoders post-hoc by mapping these onto nearby ``interpretable'' encoders, and experimentally evaluated the performance of these interpretable encoders with various decoders. Here we look at developing tools for interpreting the training process for deep-learned error-correcting codes, focusing on: 1) using the Goldreich-Levin algorithm to quickly interpret the learned encoder; 2) using Fourier coefficients as a tool for understanding the training dynamics and the loss landscape; 3) reformulating the training loss, the binary cross entropy, by relating it to encoder and decoder parameters, and the bit error rate (BER); 4) using these insights to formulate and study a new training procedure. All tools are demonstrated on TurboAE, but are applicable to other deep-learned forward error correcting codes (without feedback).
Abstract:We investigate the design of an entire mobile imaging system for early detection of melanoma. Different from previous work, we focus on smartphone-captured visible light images. Our design addresses two major challenges. First, images acquired using a smartphone under loosely-controlled environmental conditions may be subject to various distortions, and this makes melanoma detection more difficult. Second, processing performed on a smartphone is subject to stringent computation and memory constraints. In our work, we propose a detection system that is optimized to run entirely on the resource-constrained smartphone. Our system intends to localize the skin lesion by combining a lightweight method for skin detection with a hierarchical segmentation approach using two fast segmentation methods. Moreover, we study an extensive set of image features and propose new numerical features to characterize a skin lesion. Furthermore, we propose an improved feature selection algorithm to determine a small set of discriminative features used by the final lightweight system. In addition, we study the human-computer interface (HCI) design to understand the usability and acceptance issues of the proposed system.