Abstract:In this paper, a comprehensive survey of 48 filters for impulsive noise removal from color images is presented. The filters are formulated using a uniform notation and categorized into 8 families. The performance of these filters is compared on a large set of images that cover a variety of domains using three effectiveness and one efficiency criteria. In order to ensure a fair efficiency comparison, a fast and accurate approximation for the inverse cosine function is introduced. In addition, commonly used distance measures (Minkowski, angular, and directional-distance) are analyzed and evaluated. Finally, suggestions are provided on how to choose a filter given certain requirements.
Abstract:In this paper, we present a fast switching filter for impulsive noise removal from color images. The filter exploits the HSL color space, and is based on the peer group concept, which allows for the fast detection of noise in a neighborhood without resorting to pairwise distance computations between each pixel. Experiments on large set of diverse images demonstrate that the proposed approach is not only extremely fast, but also gives excellent results in comparison to various state-of-the-art filters.