Abstract:This paper proposes a fast system technology co-optimization (STCO) framework that optimizes power, performance, and area (PPA) for next-generation IC design, addressing the challenges and opportunities presented by novel materials and device architectures. We focus on accelerating the technology level of STCO using AI techniques, by employing graph neural network (GNN)-based approaches for both TCAD simulation and cell library characterization, which are interconnected through a unified compact model, collectively achieving over a 100X speedup over traditional methods. These advancements enable comprehensive STCO iterations with runtime speedups ranging from 1.9X to 14.1X and supports both emerging and traditional technologies.
Abstract:Design technology co-optimization (DTCO) plays a critical role in achieving optimal power, performance, and area (PPA) for advanced semiconductor process development. Cell library characterization is essential in DTCO flow, but traditional methods are time-consuming and costly. To overcome these challenges, we propose a graph neural network (GNN)-based machine learning model for rapid and accurate cell library characterization. Our model incorporates cell structures and demonstrates high prediction accuracy across various process-voltage-temperature (PVT) corners and technology parameters. Validation with 512 unseen technology corners and over one million test data points shows accurate predictions of delay, power, and input pin capacitance for 33 types of cells, with a mean absolute percentage error (MAPE) $\le$ 0.95% and a speed-up of 100X compared with SPICE simulations. Additionally, we investigate system-level metrics such as worst negative slack (WNS), leakage power, and dynamic power using predictions obtained from the GNN-based model on unseen corners. Our model achieves precise predictions, with absolute error $\le$3.0 ps for WNS, percentage errors $\le$0.60% for leakage power, and $\le$0.99% for dynamic power, when compared to golden reference. With the developed model, we further proposed a fine-grained drive strength interpolation methodology to enhance PPA for small-to-medium-scale designs, resulting in an approximate 1-3% improvement.