Abstract:Hyperspectral unmixing is a critical yet challenging task in hyperspectral image interpretation. Recently, great efforts have been made to solve the hyperspectral unmixing task via deep autoencoders. However, existing networks mainly focus on extracting spectral features from mixed pixels, and the employment of spatial feature prior knowledge is still insufficient. To this end, we put forward a spatial attention weighted unmixing network, dubbed as SAWU-Net, which learns a spatial attention network and a weighted unmixing network in an end-to-end manner for better spatial feature exploitation. In particular, we design a spatial attention module, which consists of a pixel attention block and a window attention block to efficiently model pixel-based spectral information and patch-based spatial information, respectively. While in the weighted unmixing framework, the central pixel abundance is dynamically weighted by the coarse-grained abundances of surrounding pixels. In addition, SAWU-Net generates dynamically adaptive spatial weights through the spatial attention mechanism, so as to dynamically integrate surrounding pixels more effectively. Experimental results on real and synthetic datasets demonstrate the better accuracy and superiority of SAWU-Net, which reflects the effectiveness of the proposed spatial attention mechanism.