Spring
Abstract:The inherent characteristics of lung tissues, which are independent of breathing manoeuvre, may provide fundamental information on lung function. This paper attempted to study function-correlated lung textures and their spatial distribution from CT. 21 lung cancer patients with thoracic 4DCT scans, DTPA-SPECT ventilation images (V), and available pulmonary function test (PFT) measurements were collected. 79 radiomic features were included for analysis, and a sparse-to-fine strategy including subregional feature discovery and voxel-wise feature distribution study was carried out to identify the function-correlated radiomic features. At the subregion level, lung CT images were partitioned and labeled as defected/non-defected patches according to reference V. At the voxel-wise level, feature maps (FMs) of selected feature candidates were generated for each 4DCT phase. Quantitative metrics, including Spearman coefficient of correlation (SCC) and Dice similarity coefficient (DSC) for FM-V spatial agreement assessments, intra-class coefficient of correlation (ICC) for FM robustness evaluations, and FM-PFT comparisons, were applied to validate the results. At the subregion level, eight function-correlated features were filtered out with medium-to-large statistical strength (effect size>0.330) to differentiate defected/non-defected lung regions. At the voxel-wise level, FMs of candidates yielded moderate-to-strong voxel-wise correlations with reference V. Among them, FMs of GLDM Dependence Non-uniformity showed the highest robust (ICC=0.96) spatial correlation, with median SCCs ranging from 0.54 to 0.59 throughout ten phases. Its phase-averaged FM achieved a median SCC of 0.60, the median DSC of 0.60/0.65 for high/low functional lung volumes, respectively, and the correlation of 0.646 between the spatially averaged feature values and PFT measurements.
Abstract:The prediction of adaptive radiation therapy (ART) prior to radiation therapy (RT) for nasopharyngeal carcinoma (NPC) patients is important to reduce toxicity and prolong the survival of patients. Currently, due to the complex tumor micro-environment, a single type of high-resolution image can provide only limited information. Meanwhile, the traditional softmax-based loss is insufficient for quantifying the discriminative power of a model. To overcome these challenges, we propose a supervised multi-view contrastive learning method with an additive margin (MMCon). For each patient, four medical images are considered to form multi-view positive pairs, which can provide additional information and enhance the representation of medical images. In addition, the embedding space is learned by means of contrastive learning. NPC samples from the same patient or with similar labels will remain close in the embedding space, while NPC samples with different labels will be far apart. To improve the discriminative ability of the loss function, we incorporate a margin into the contrastive learning. Experimental result show this new learning objective can be used to find an embedding space that exhibits superior discrimination ability for NPC images.