Abstract:By monitoring temporal contrast, event-based vision sensors can provide high temporal resolution and low latency while maintaining low power consumption and simplicity in circuit structure. These characteristics have garnered significant attention in both academia and industry. In recent years, the application of back-illuminated (BSI) technology, wafer stacking techniques, and industrial interfaces has brought new opportunities for enhancing the performance of event-based vision sensors. This is evident in the substantial advancements made in reducing noise, improving resolution, and increasing readout rates. Additionally, the integration of these technologies has enhanced the compatibility of event-based vision sensors with current and edge vision systems, providing greater possibilities for their practical applications. This paper will review the progression from neuromorphic engineering to state-of-the-art event-based vision sensor technologies, including their development trends, operating principles, and key features. Moreover, we will delve into the sensitivity of event-based vision sensors and the opportunities and challenges they face in the realm of infrared imaging, providing references for future research and applications.