Abstract:Intelligent reflecting surface (IRS) is regarded as a revolutionary paradigm that can reconfigure the wireless propagation environment for enhancing the desired signal and/or weakening the interference, and thus improving the quality of service (QoS) for communication systems. In this paper, we propose an IRS-aided sectorized BS design where the IRS is mounted in front of a transmitter (TX) and reflects/reconfigures signal towards the desired user equipment (UE). Unlike prior works that address link-level analysis/optimization of IRS-aided systems, we focus on the system-level three-dimensional (3D) coverage performance in both single-/multiple-cell scenarios. To this end, a distance/angle-dependent 3D channel model is considered for UEs in the 3D space, as well as the non-isotropic TX beam pattern and IRS element radiation pattern (ERP), both of which affect the average channel power as well as the multi-path fading statistics. Based on the above, a general formula of received signal power in our design is obtained, along with derived power scaling laws and upper/lower bounds on the mean signal/interference power under IRS passive beamforming or random scattering. Numerical results validate our analysis and demonstrate that our proposed design outperforms the benchmark schemes with fixed BS antenna patterns or active 3D beamforming. In particular, for aerial UEs that suffer from strong inter-cell interference, the IRS-aided BS design provides much better QoS in terms of the ergodic throughput performance compared with benchmarks, thanks to the IRS-inherent double pathloss effect that helps weaken the interference.