Abstract:With the rapid development of artificial intelligence, intelligent decision-making techniques have gradually surpassed human levels in various human-machine competitions, especially in complex multi-agent cooperative task scenarios. Multi-agent cooperative decision-making involves multiple agents working together to complete established tasks and achieve specific objectives. These techniques are widely applicable in real-world scenarios such as autonomous driving, drone navigation, disaster rescue, and simulated military confrontations. This paper begins with a comprehensive survey of the leading simulation environments and platforms used for multi-agent cooperative decision-making. Specifically, we provide an in-depth analysis for these simulation environments from various perspectives, including task formats, reward allocation, and the underlying technologies employed. Subsequently, we provide a comprehensive overview of the mainstream intelligent decision-making approaches, algorithms and models for multi-agent systems (MAS). Theseapproaches can be broadly categorized into five types: rule-based (primarily fuzzy logic), game theory-based, evolutionary algorithms-based, deep multi-agent reinforcement learning (MARL)-based, and large language models(LLMs)reasoning-based. Given the significant advantages of MARL andLLMs-baseddecision-making methods over the traditional rule, game theory, and evolutionary algorithms, this paper focuses on these multi-agent methods utilizing MARL and LLMs-based techniques. We provide an in-depth discussion of these approaches, highlighting their methodology taxonomies, advantages, and drawbacks. Further, several prominent research directions in the future and potential challenges of multi-agent cooperative decision-making are also detailed.