Abstract:Optimizing risk-averse objectives in discounted MDPs is challenging because most models do not admit direct dynamic programming equations and require complex history-dependent policies. In this paper, we show that the risk-averse {\em total reward criterion}, under the Entropic Risk Measure (ERM) and Entropic Value at Risk (EVaR) risk measures, can be optimized by a stationary policy, making it simple to analyze, interpret, and deploy. We propose exponential value iteration, policy iteration, and linear programming to compute optimal policies. In comparison with prior work, our results only require the relatively mild condition of transient MDPs and allow for {\em both} positive and negative rewards. Our results indicate that the total reward criterion may be preferable to the discounted criterion in a broad range of risk-averse reinforcement learning domains.
Abstract:Multi-model Markov decision process (MMDP) is a promising framework for computing policies that are robust to parameter uncertainty in MDPs. MMDPs aim to find a policy that maximizes the expected return over a distribution of MDP models. Because MMDPs are NP-hard to solve, most methods resort to approximations. In this paper, we derive the policy gradient of MMDPs and propose CADP, which combines a coordinate ascent method and a dynamic programming algorithm for solving MMDPs. The main innovation of CADP compared with earlier algorithms is to take the coordinate ascent perspective to adjust model weights iteratively to guarantee monotone policy improvements to a local maximum. A theoretical analysis of CADP proves that it never performs worse than previous dynamic programming algorithms like WSU. Our numerical results indicate that CADP substantially outperforms existing methods on several benchmark problems.