Abstract:The real-time motion prediction of a floating offshore platform refers to forecasting its motions in the following one- or two-wave cycles, which helps improve the performance of a motion compensation system and provides useful early warning information. In this study, we extend a deep learning (DL) model, which could predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy, to quantify its uncertainty of the predictive time series with the help of the dropout technique. By repeating the inference several times, it is found that the collection of the predictive time series is a Gaussian process (GP). The DL model with dropout learned a kernel inside, and the learning procedure was similar to GP regression. Adding noise into training data could help the model to learn more robust features from the training data, thereby leading to a better performance on test data with a wide noise level range. This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
Abstract:Real-time motion prediction of a vessel or a floating platform can help to improve the performance of motion compensation systems. It can also provide useful early-warning information for offshore operations that are critical with regard to motion. In this study, a long short-term memory (LSTM) -based machine learning model was developed to predict heave and surge motions of a semi-submersible. The training and test data came from a model test carried out in the deep-water ocean basin, at Shanghai Jiao Tong University, China. The motion and measured waves were fed into LSTM cells and then went through serval fully connected (FC) layers to obtain the prediction. With the help of measured waves, the prediction extended 46.5 s into future with an average accuracy close to 90%. Using a noise-extended dataset, the trained model effectively worked with a noise level up to 0.8. As a further step, the model could predict motions only based on the motion itself. Based on sensitive studies on the architectures of the model, guidelines for the construction of the machine learning model are proposed. The proposed LSTM model shows a strong ability to predict vessel wave-excited motions.