Abstract:In recent years, neural network-based anomaly detection methods have attracted considerable attention in the hyperspectral remote sensing domain due to the powerful reconstruction ability compared with traditional methods. However, actual probability distribution statistics hidden in the latent space are not discovered by exploiting the reconstruction error because the probability distribution of anomalies is not explicitly modeled. To address the issue, we propose a novel probability distribution representation detector (PDRD) that explores the intrinsic distribution of both the background and the anomalies in original data for hyperspectral anomaly detection in this paper. First, we represent the hyperspectral data with multivariate Gaussian distributions from a probabilistic perspective. Then, we combine the local statistics with the obtained distributions to leverage the spatial information. Finally, the difference between the corresponding distributions of the test pixel and the average expectation of the pixels in the Chebyshev neighborhood is measured by computing the modified Wasserstein distance to acquire the detection map. We conduct the experiments on four real data sets to evaluate the performance of our proposed method. Experimental results demonstrate the accuracy and efficiency of our proposed method compared to the state-of-the-art detection methods.
Abstract:The technique of detecting multiple dim and small targets with low signal-to-clutter ratios (SCR) is very important for infrared search and tracking systems. In this paper, we establish a detection method derived from maximal entropy random walk (MERW) to robustly detect multiple small targets. Initially, we introduce the primal MERW and analyze the feasibility of applying it to small target detection. However, the original weight matrix of the MERW is sensitive to interferences. Therefore, a specific weight matrix is designed for the MERW in principle of enhancing characteristics of small targets and suppressing strong clutters. Moreover, the primal MERW has a critical limitation of strong bias to the most salient small target. To achieve multiple small targets detection, we develop a hierarchical version of the MERW method. Based on the hierarchical MERW (HMERW), we propose a small target detection method as follows. First, filtering technique is used to smooth the infrared image. Second, an output map is obtained by importing the filtered image into the HMERW. Then, a coefficient map is constructed to fuse the stationary dirtribution map of the HMERW. Finally, an adaptive threshold is used to segment multiple small targets from the fusion map. Extensive experiments on practical data sets demonstrate that the proposed method is superior to the state-of-the-art methods in terms of target enhancement, background suppression and multiple small targets detection.
Abstract:Unsupervised learning methods for feature extraction are becoming more and more popular. We combine the popular contrastive learning method (prototypical contrastive learning) and the classic representation learning method (autoencoder) to design an unsupervised feature learning network for hyperspectral classification. Experiments have proved that our two proposed autoencoder networks have good feature learning capabilities by themselves, and the contrastive learning network we designed can better combine the features of the two to learn more representative features. As a result, our method surpasses other comparison methods in the hyperspectral classification experiments, including some supervised methods. Moreover, our method maintains a fast feature extraction speed than baseline methods. In addition, our method reduces the requirements for huge computing resources, separates feature extraction and contrastive learning, and allows more researchers to conduct research and experiments on unsupervised contrastive learning.