Abstract:Advances in text-to-speech (TTS) technology have significantly improved the quality of generated speech, closely matching the timbre and intonation of the target speaker. However, due to the inherent complexity of human emotional expression, the development of TTS systems capable of controlling subtle emotional differences remains a formidable challenge. Existing emotional speech databases often suffer from overly simplistic labelling schemes that fail to capture a wide range of emotional states, thus limiting the effectiveness of emotion synthesis in TTS applications. To this end, recent efforts have focussed on building databases that use natural language annotations to describe speech emotions. However, these approaches are costly and require more emotional depth to train robust systems. In this paper, we propose a novel process aimed at building databases by systematically extracting emotion-rich speech segments and annotating them with detailed natural language descriptions through a generative model. This approach enhances the emotional granularity of the database and significantly reduces the reliance on costly manual annotations by automatically augmenting the data with high-level language models. The resulting rich database provides a scalable and economically viable solution for developing a more nuanced and dynamic basis for developing emotionally controlled TTS systems.
Abstract:In traditional medical practices, music therapy has proven effective in treating various psychological and physiological ailments. Particularly in Eastern traditions, the Five Elements Music Therapy (FEMT), rooted in traditional Chinese medicine, possesses profound cultural significance and unique therapeutic philosophies. With the rapid advancement of Information Technology and Artificial Intelligence, applying these modern technologies to FEMT could enhance the personalization and cultural relevance of the therapy and potentially improve therapeutic outcomes. In this article, we developed a music therapy system for the first time by applying the theory of the five elements in music therapy to practice. This innovative approach integrates advanced Information Technology and Artificial Intelligence with Five-Element Music Therapy (FEMT) to enhance personalized music therapy practices. As traditional music therapy predominantly follows Western methodologies, the unique aspects of Eastern practices, specifically the Five-Element theory from traditional Chinese medicine, should be considered. This system aims to bridge this gap by utilizing computational technologies to provide a more personalized, culturally relevant, and therapeutically effective music therapy experience.