Abstract:In the sixth-generation (6G) integrated sensing and communication (ISAC) cellular network, base stations (BSs) can collaborate with each other to reap not only the cooperative communication gain, but also the networked sensing gain. In contrast to cooperative communication where both line-of-sight (LOS) paths and non-line-of-sight (NLOS) paths are useful, networked sensing mainly relies on the LOS paths. However, in practice, the number of BSs possessing LOS paths to a target can be small, leading to marginal networked sensing gain. Because the density of user equipments (UEs) is much larger than that of the BSs, this paper considers a UE-assisted networked sensing architecture, where a BS transmits communication signals in the downlink, while the UEs that receive the echo signals scattered by a target can cooperate with the BS to localize it. Under this scheme, however, the positions of the UEs are estimated by Global Positioning System (GPS) and subject to unknown errors. If some UEs with significantly erroneous position information are used as anchors, the localization performance can be severely degraded. Based on the outlier detection technique, this paper proposes an efficient method to select a subset of UEs with accurate position information as anchors for localizing the target. Numerical results show that our scheme can select good UEs as anchors with very high probability, indicating that networked sensing can be realized in practice with the aid of UEs.