Abstract:In this paper, we present a reinforcement learning (RL) method for solving optimal false data injection attack problems in probabilistic Boolean control networks (PBCNs) where the attacker lacks knowledge of the system model. Specifically, we employ a Q-learning (QL) algorithm to address this problem. We then propose an improved QL algorithm that not only enhances learning efficiency but also obtains optimal attack strategies for large-scale PBCNs that the standard QL algorithm cannot handle. Finally, we verify the effectiveness of our proposed approach by considering two attacked PBCNs, including a 10-node network and a 28-node network.