Abstract:SSD (Single Shot Multibox Detector) is one of the most successful object detectors for its high accuracy and fast speed. However, the features from shallow layer (mainly Conv4_3) of SSD lack semantic information, resulting in poor performance in small objects. In this paper, we proposed DDSSD (Dilation and Deconvolution Single Shot Multibox Detector), an enhanced SSD with a novel feature fusion module which can improve the performance over SSD for small object detection. In the feature fusion module, dilation convolution module is utilized to enlarge the receptive field of features from shallow layer and deconvolution module is adopted to increase the size of feature maps from high layer. Our network achieves 79.7% mAP on PASCAL VOC2007 test and 28.3% mmAP on MS COCO test-dev at 41 FPS with only 300x300 input using a single Nvidia 1080 GPU. Especially, for small objects, DDSSD achieves 10.5% on MS COCO and 22.8% on FLIR thermal dataset, outperforming a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.
Abstract:Small objects have relatively low resolution, the unobvious visual features which are difficult to be extracted, so the existing object detection methods cannot effectively detect small objects, and the detection speed and stability are poor. Thus, this paper proposes a small object detection algorithm based on FSSD, meanwhile, in order to reduce the computational cost and storage space, pruning is carried out to achieve model compression. Firstly, the semantic information contained in the features of different layers can be used to detect different scale objects, and the feature fusion method is improved to obtain more information beneficial to small objects; secondly, batch normalization layer is introduced to accelerate the training of neural network and make the model sparse; finally, the model is pruned by scaling factor to get the corresponding compressed model. The experimental results show that the average accuracy (mAP) of the algorithm can reach 80.4% on PASCAL VOC and the speed is 59.5 FPS on GTX1080ti. After pruning, the compressed model can reach 79.9% mAP, and 79.5 FPS in detection speed. On MS COCO, the best detection accuracy (APs) is 12.1%, and the overall detection accuracy is 49.8% AP when IoU is 0.5. The algorithm can not only improve the detection accuracy of small objects, but also greatly improves the detection speed, which reaches a balance between speed and accuracy.