Abstract:Delay-Doppler alignment modulation (DDAM) is a novel technique to mitigate time-frequency doubly selective channels by leveraging the high spatial resolution offered by large antenna arrays and multi-path sparsity of millimeter wave (mmWave) and TeraHertz (THz) channels. By introducing per-path delay and Doppler compensations, followed by path-based beamforming, it is possible to reshape the channel features with significantly reduced channel delay and Doppler spreads. This offers new degrees-of-freedom for waveform designs such as orthogonal time frequency space (OTFS), since the reshaped channel can significantly relax the constraints on OTFS parameter selection and reduce the complexity of signal detection at the receiver. Therefore, in this paper, by combing DDAM with OTFS, we propose a novel technique termed DDAM-OTFS. Two implementation schemes are introduced for DDAM-OTFS, namely path-based alignment and bin-based alignment. Simulation results are provided to demonstrate the superior performance of the proposed DDAM-OTFS in terms of spectral efficiency (SE) and peak-to-average power ratio (PAPR) compared to the conventional OTFS.
Abstract:Waveform design has served as a cornerstone for each generation of mobile communication systems. The future sixth-generation (6G) mobile communication networks are expected to employ larger-scale antenna arrays and exploit higher-frequency bands for further boosting data transmission rate and providing ubiquitous wireless sensing. This brings new opportunities and challenges for 6G waveform design. In this article, by leveraging the super spatial resolution of large antenna arrays and the multi-path spatial sparsity of highfrequency wireless channels, we introduce a new approach for waveform design based on the recently proposed delay-Doppler alignment modulation (DDAM). In particular, DDAM makes a paradigm shift of waveform design from the conventional manner of tolerating channel delay and Doppler spreads to actively manipulating them. First, we review the fundamental constraints and performance limitations of orthogonal frequency division multiplexing (OFDM) and introduce new opportunities for 6G waveform design. Next, the motivations and basic principles of DDAM are presented, followed by its various extensions to different wireless system setups. Finally, the main design considerations for DDAM are discussed and the new opportunities for future research are highlighted.