Abstract:The rise of smart factories has heightened the demand for automated maintenance, and normal-data-based anomaly detection has proved particularly effective in environments where anomaly data are scarce. This method, which does not require anomaly data during training, has prompted researchers to focus not only on detecting anomalies but also on classifying severity levels by using anomaly scores. However, the existing performance metrics, such as the area under the receiver operating characteristic curve (AUROC), do not effectively reflect the performance of models in classifying severity levels based on anomaly scores. To address this limitation, we propose the weighted sum of the area under the receiver operating characteristic curve (WS-AUROC), which combines AUROC with a penalty for severity level differences. We conducted various experiments using different penalty assignment methods: uniform penalty regardless of severity level differences, penalty based on severity level index differences, and penalty based on actual physical quantities that cause anomalies. The latter method was the most sensitive. Additionally, we propose an anomaly detector that achieves clear separation of distributions and outperforms the ablation models on the WS-AUROC and AUROC metrics.
Abstract:The drone has been used for various purposes, including military applications, aerial photography, and pesticide spraying. However, the drone is vulnerable to external disturbances, and malfunction in propellers and motors can easily occur. To improve the safety of drone operations, one should detect the mechanical faults of drones in real-time. This paper proposes a sound-based deep neural network (DNN) fault classifier and drone sound dataset. The dataset was constructed by collecting the operating sounds of drones from microphones mounted on three different drones in an anechoic chamber. The dataset includes various operating conditions of drones, such as flight directions (front, back, right, left, clockwise, counterclockwise) and faults on propellers and motors. The drone sounds were then mixed with noises recorded in five different spots on the university campus, with a signal-to-noise ratio (SNR) varying from 10 dB to 15 dB. Using the acquired dataset, we train a DNN classifier, 1DCNN-ResNet, that classifies the types of mechanical faults and their locations from short-time input waveforms. We employ multitask learning (MTL) and incorporate the direction classification task as an auxiliary task to make the classifier learn more general audio features. The test over unseen data reveals that the proposed multitask model can successfully classify faults in drones and outperforms single-task models even with less training data.
Abstract:In-situ classification of faulty sounds is an important issue in machine health monitoring and diagnosis. However, in a noisy environment such as a factory, machine sound is always mixed up with environmental noises, and noise-only periods can exist when a machine is not in operation. Therefore, a deep neural network (DNN)-based fault classifier has to be able to distinguish noise from machine sound and be robust to mixed noises. To deal with these problems, we investigate on-site noise exposure (ONE) that exposes a DNN model to the noises recorded in the same environment where the machine operates. Like the outlier exposure technique, noise exposure trains a DNN classifier to produce a uniform predicted probability distribution against noise-only data. During inference, the DNN classifier trained by ONE outputs the maximum softmax probability as the noise score and determines the noise-only period. We mix machine sound and noises of the ToyADMOS2 dataset to simulate highly noisy data. A ResNet-based classifier trained by ONE is evaluated and compared with those trained by other out-of-distribution detection techniques. The test results show that exposing a model to on-site noises can make a model more robust than using other noises or detection techniques.