Abstract:Neural networks have shown promising potential in accelerating the numerical simulation of systems governed by partial differential equations (PDEs). Different from many existing neural network surrogates operating on high-dimensional discretized fields, we propose to learn the dynamics of the system in the latent space with much coarser discretizations. In our proposed framework - Latent Neural PDE Solver (LNS), a non-linear autoencoder is first trained to project the full-order representation of the system onto the mesh-reduced space, then a temporal model is trained to predict the future state in this mesh-reduced space. This reduction process simplifies the training of the temporal model by greatly reducing the computational cost accompanying a fine discretization. We study the capability of the proposed framework and several other popular neural PDE solvers on various types of systems including single-phase and multi-phase flows along with varying system parameters. We showcase that it has competitive accuracy and efficiency compared to the neural PDE solver that operates on full-order space.
Abstract:Fluid data completion is a research problem with high potential benefit for both experimental and computational fluid dynamics. An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment, and allows a coarser and more adaptive mesh for a Computational Fluid Dynamics (CFD) simulation. However, the ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution and presents high numerical uncertainty and instability for a data-driven approach (e.g., a neural network model). To address these challenges, we leverage recent advancements in computer vision, employing the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations via a two-stage learning procedure. We demonstrated the effectiveness of our approach on Kolmogorov flow data (Reynolds number: 1000) occluded by masks of different size and arrangement. Experimental results show that our proposed model consistently outperforms benchmark models under different occlusion settings in terms of point-wise reconstruction accuracy as well as turbulent energy spectrum and vorticity distribution.