Abstract:Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen during the training phase (open-set scenarios). Therefore, open-set face recognition is a subject of increasing interest as it deals with identifying individuals in a space where not all faces are known in advance. This is useful in several applications, such as access authentication, on which only a few individuals that have been previously enrolled in a gallery are allowed. The present work introduces a novel approach towards open-set face recognition focusing on small galleries and in enrollment detection, not identity retrieval. A Siamese Network architecture is proposed to learn a model to detect if a face probe is enrolled in the gallery based on a verification-like approach. Promising results were achieved for small galleries on experiments carried out on Pubfig83, FRGCv1 and LFW datasets. State-of-the-art methods like HFCN and HPLS were outperformed on FRGCv1. Besides, a new evaluation protocol is introduced for experiments in small galleries on LFW.
Abstract:Due to the increasingly need for automatic traffic monitoring, vehicle license plate detection is of high interest to perform automatic toll collection, traffic law enforcement, parking lot access control, among others. In this paper, a sliding window approach based on Histogram of Oriented Gradients (HOG) features is used for Brazilian license plate detection. This approach consists in scanning the whole image in a multiscale fashion such that the license plate is located precisely. The main contribution of this work consists in a deep study of the best setup for HOG descriptors on the detection of Brazilian license plates, in which HOG have never been applied before. We also demonstrate the reliability of this method ensured by a recall higher than 98% (with a precision higher than 78%) in a publicly available data set.