Abstract:The complexity and heterogeneity of data in many real-world applications pose significant challenges for traditional machine learning and signal processing techniques. For instance, in medicine, effective analysis of diverse physiological signals is crucial for patient monitoring and clinical decision-making and yet highly challenging. We introduce MedTsLLM, a general multimodal large language model (LLM) framework that effectively integrates time series data and rich contextual information in the form of text to analyze physiological signals, performing three tasks with clinical relevance: semantic segmentation, boundary detection, and anomaly detection in time series. These critical tasks enable deeper analysis of physiological signals and can provide actionable insights for clinicians. We utilize a reprogramming layer to align embeddings of time series patches with a pretrained LLM's embedding space and make effective use of raw time series, in conjunction with textual context. Given the multivariate nature of medical datasets, we develop methods to handle multiple covariates. We additionally tailor the text prompt to include patient-specific information. Our model outperforms state-of-the-art baselines, including deep learning models, other LLMs, and clinical methods across multiple medical domains, specifically electrocardiograms and respiratory waveforms. MedTsLLM presents a promising step towards harnessing the power of LLMs for medical time series analysis that can elevate data-driven tools for clinicians and improve patient outcomes.
Abstract:Radiative heat transfer is a fundamental process in high energy density physics and inertial fusion. Accurately predicting the behavior of Marshak waves across a wide range of material properties and drive conditions is crucial for design and analysis of these systems. Conventional numerical solvers and analytical approximations often face challenges in terms of accuracy and computational efficiency. In this work, we propose a novel approach to model Marshak waves using Fourier Neural Operators (FNO). We develop two FNO-based models: (1) a base model that learns the mapping between the drive condition and material properties to a solution approximation based on the widely used analytic model by Hammer & Rosen (2003), and (2) a model that corrects the inaccuracies of the analytic approximation by learning the mapping to a more accurate numerical solution. Our results demonstrate the strong generalization capabilities of the FNOs and show significant improvements in prediction accuracy compared to the base analytic model.