Abstract:Efficient and high-fidelity 3D scene modeling is a long-standing pursuit in computer graphics. While recent 3D Gaussian Splatting (3DGS) methods achieve impressive real-time modeling performance, they rely on resource-unconstrained training assumptions that fail on mobile devices, which are limited by minute-scale training budgets and hardware-available peak-memory. We present PocketGS, a mobile scene modeling paradigm that enables on-device 3DGS training under these tightly coupled constraints while preserving high perceptual fidelity. Our method resolves the fundamental contradictions of standard 3DGS through three co-designed operators: G builds geometry-faithful point-cloud priors; I injects local surface statistics to seed anisotropic Gaussians, thereby reducing early conditioning gaps; and T unrolls alpha compositing with cached intermediates and index-mapped gradient scattering for stable mobile backpropagation. Collectively, these operators satisfy the competing requirements of training efficiency, memory compactness, and modeling fidelity. Extensive experiments demonstrate that PocketGS is able to outperform the powerful mainstream workstation 3DGS baseline to deliver high-quality reconstructions, enabling a fully on-device, practical capture-to-rendering workflow.
Abstract:3D Gaussian Splatting (3DGS) has recently emerged as a powerful paradigm for photorealistic view synthesis, representing scenes with spatially distributed Gaussian primitives. While highly effective for rendering, achieving accurate and complete surface reconstruction remains challenging due to the unstructured nature of the representation and the absence of explicit geometric supervision. In this work, we propose DiGS, a unified framework that embeds Signed Distance Field (SDF) learning directly into the 3DGS pipeline, thereby enforcing strong and interpretable surface priors. By associating each Gaussian with a learnable SDF value, DiGS explicitly aligns primitives with underlying geometry and improves cross-view consistency. To further ensure dense and coherent coverage, we design a geometry-guided grid growth strategy that adaptively distributes Gaussians along geometry-consistent regions under a multi-scale hierarchy. Extensive experiments on standard benchmarks, including DTU, Mip-NeRF 360, and Tanks& Temples, demonstrate that DiGS consistently improves reconstruction accuracy and completeness while retaining high rendering fidelity.
Abstract:We introduce NeuV-SLAM, a novel dense simultaneous localization and mapping pipeline based on neural multiresolution voxels, characterized by ultra-fast convergence and incremental expansion capabilities. This pipeline utilizes RGBD images as input to construct multiresolution neural voxels, achieving rapid convergence while maintaining robust incremental scene reconstruction and camera tracking. Central to our methodology is to propose a novel implicit representation, termed VDF that combines the implementation of neural signed distance field (SDF) voxels with an SDF activation strategy. This approach entails the direct optimization of color features and SDF values anchored within the voxels, substantially enhancing the rate of scene convergence. To ensure the acquisition of clear edge delineation, SDF activation is designed, which maintains exemplary scene representation fidelity even under constraints of voxel resolution. Furthermore, in pursuit of advancing rapid incremental expansion with low computational overhead, we developed hashMV, a novel hash-based multiresolution voxel management structure. This architecture is complemented by a strategically designed voxel generation technique that synergizes with a two-dimensional scene prior. Our empirical evaluations, conducted on the Replica and ScanNet Datasets, substantiate NeuV-SLAM's exceptional efficacy in terms of convergence speed, tracking accuracy, scene reconstruction, and rendering quality.